
Ma 3b Practical – Final Review

March 14, 2025

Please note that while I have proofread these notes, there may still be typos
present. These notes are primarily intended for your practice, and there might be
occasional typos in the formulas. For complete accuracy, you should refer to the
textbook. I cannot be held responsible for any typos that might appear in this
materials.

1 Axioms of Probability

1.1 Properties of operators on Events

1. Commutativity: E∪ F = F∪ E and E∩ F = F∩ E

2. Associativity: (E∪ F)∪G = E∪ (F∪G) and (E∩ F)∩G = E∪ (F∩G)

3. Distributivity: (E∪ F)∩G = (E∩G)∪ (F∩G) and (E∩ F)∪G = (E∪G)∩ (F∪G)

4. De Morgan’s laws: If Γ is a finite or countable index set, then(
∪γ∈ΓEγ

)c
= ∩γ∈ΓE

c
γ and

(
∩γ∈ΓEγ

)c
= ∪γ∈ΓE

c
γ

1.2 Axioms of probability

1. From Definition, we have:

• P(E) ⩾ 0 for all E ∈ F

• P(Ω) = 1

• For all mutually disjoint events {Ei}
∞
i=1 (i.e. Ei ∩ Ej = ∅ for all i ̸= j)

P(∪∞
i=1Ei) =

∞∑
i=1

P(Ei)

2. Direct sequences
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• P(Ec) = 1 − P(E)

• P(∅) = 0

• E ⊂ F then P(E) ⩽ P(F)

• Sub-additivity: (Note that here we do not require them to be disjoint)

P(∪∞
i=1Ei) ⩽

∞∑
i=1

P(Ei)

3. Inclusion-exclusion principle

• For any event E and F

P(E∪ F) = P(E) + P(F) − P(E∩ F)

• In general,

P(E1 ∪· · ·∪En) =

n∑
i=1

P(Ei)−
∑
i1<i2

P(Ei1 ∩Ei2)+ · · ·+(−1)n+1P(E1 ∩· · ·∩En)

1.3 Exercises

Exercise 1. Find the simplest expression for the following events:

1. (E∪ F)∩ (E∪ Fc)

2. (E∪ F)∩ (Ec ∪ F)∩ (E∪ Fc)

3. (E∪ F)∩ (F∪G)

Solution.

1. (E∪ F)∩ (E∪ Fc) = E∪ (F∩ Fc) = E∪ ∅ = E

2. (E∪ F)∩ (Ec ∪ F)∩ (E∪ Fc) = [(E∩ Ec)∪ F]∩ (E∪ Fc) = [∅ ∪ F]∩ (E∪ Fc)
= F∩ (E∪ Fc) = (F∩ E)∪ (F∩ Fc) = (F∩ E)∪ ∅ = E∩ F

3. (E∪ F)∩ (F∪G) = (F∪ E)∩ (F∪G) = F∪ (E∩G)
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2 Bayes’ Theorem

2.1 Formula

1. Conditional probability: for P(F) > 0,

P(E | F) =
P(E∩ F)

P(F)
.

2. Law of total probability: P(A) = P(A∩B) + P(A∩Bc)

3. Bayes’ theorem:

P(A | B) =
P(A∩B)

P([B)
=

P(B | A)P(A)

P(B)
=

P(B | A)P(A)

P(B | A)P(A) + P(B | Ac)P(Ac)

4. Independent events: E and F are independent if

P(E∩ F) = P(E) · P(F).

Or equivalently, P(E | F) = P(E). (conditional on F does not give you any new
information about E )

2.2 Exercises

Exercise 2. 98% of babies survive childbirth. However, 15% of births require a C-
section, and when it does, 96% of babies survive. If a randomly chosen pregnant
woman does not have a C-section, what is the probability that her baby will survive?

Solution. For a given childbirth, let

E = {the baby survives}

F = {there was a caesarean}

so the information of the problem tells us that

P(E) = 0.98 and P(F) = 0.15 and P(E | F) = 0.96

By the formula of total probability,

P(E) = P(E | Fc)P(Fc) + P(E | F)P(F)

Therefore, we deduce that

P(E | Fc) =
0.98 − 0.96 ∗ 0.15

1 − 0.15
= 0.9835.
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3 Random Variables and Common Distribution

3.1 Discrete random variables

1. Probability mass function (pmf) of X: p(k) = P(X = K) =

2. Cumulative distribution function (cdf) of X:

• FX(b) = P(X ⩽ b), b ∈ R

• 3 properties: (Also for the continuous random variables)

(a) limb→∞ F(b) = 1
(b) limb→−∞ F(b) = 0
(c) F is right-continuous

• Summing pmf we get cdf and the jump of cdf corresponds at X = k to pmf
at k.

3. Expectation and Variance (Proposition (c) to (e) also holds for continuous r.v.)

(a) for a discrete r.v. X, the expectation of X is

E[X] =
∑

x:p(x)>0

x · p(x)

(b) Proposition: for g : R → R and a r.v. X, consider the random variable
g(X) = g ◦X. Then,

E[g(X)] =
∑
x

g(X)p(x)

(c) Proposition (linearity of expectation)

E[aX+ bY] = aE[X] + bE[Y].

the variance of X is defined as

Var(X) = E
[
(X− E[X])2] .

(d) Proposition:
Var[X] = E

[
X2]− (E[X])2.

(e) Proposition:
Var(aX+ b) = a2 · Var(X)

(f) Proposition: If X,Y are independent then

E[f(X)g(Y)] = E[g(Y)]E[g(Y)]
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3.2 Continuous random variables

1. Probability density function (pdf) fX(x) of X is a negative function s.t. for all
B ⊂ R

P(X ∈ B) =

∫
B

fX(x)dx

2. Cumulative distribution function (cdf) of X:

FX(x) =

∫x
−∞ fX(x)dx

3. Integrating pdf over the interval (−∞, x] we get cdf and differentiating cdf we
get pdf.

4. Expectation: E[x] =
∫

R
xfX(x)dx

5. Proposition: for g : R → R and a r.v. X, consider the random variable g(X) =
g ◦X. Then,

E[g(X)] =

∫
R

g(x)f(x)dx

6. Variance: Var(X) = E
[
(X− E[X])2

]
= E

[
X2
]
− (E[X])2

3.3 Common Distribution Table

Distribution PMF P(X=k)/ Density f(x) E Var
Poisson distribution Pois(λ) (discrete) P(X = k) = λk

k! e
−λ λ λ

Geometric distribution Geo(p) (discrete) P(X = k) = (1 − p)k−1p 1
p

1−p
p2

Bernoulli distribution Bern(p)(discrete) P(X = k) = pk(1 − p)n−k(k = 0, 1) p p(1-p)
Binomial distribution Bin(n,p)(discrete) P(X = k) =

(
n
k

)
pk(1 − p)n−k np np(1-p)

Uniform distribution Unif (a,b) (continuous) f(x) = 1
b−a , x ∈ [a,b] a+b

2
(b−a)2

12

Normal distribution N(µ,σ2) (continuous) f(x) = 1√
2πσ2 exp(− (x−µ)2

2σ2 ) µ σ2

Exponential Exp(λ) (continuous) f(x) = λe−λx if x ⩾ 0 1
λ

1
λ2

Gamma Gamma(α, λ) (continuous) f(x) =
(λx)α−1λe−λx

Γ(α)
α
λ

α
λ2

Table 1: summary of distributions

Remark: In Gemma distribution, Γ(α) =
∫∞

0 tα−1e−tdt

3.4 Exercises

Exercise 3. If X has a cumulative distribution function F(x) = P(X ⩽ x), what is the
cumulative distribution function of the random variable eX?
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Solution. Let Z = eX, then X = log(Z) = g(Z). Note that the function g is increasing,

FZ(z) = P(Z = eX ⩽ z) = P(g(Z) ⩽ g(z)) = P(X ⩽ log(z)) = FX(log(z)).

Exercise 4. Let X : Ωß[0, c] be a continuous random variable (not necessarily uni-
formly distributed !). Show that

Var(X) ⩽
c2

4

Solution. First, we have

E[X2] =

∫c
0
x · xf(x)dx ⩽

∫c
0
c · xf(x)dx = cE[X]

Then define the constant α = E[X]/c, then

Var(X) = E[X2] − (E[X])2 ⩽ cE[X] − −(E[X])2 = c2α(1 −α).

Since the function x → x(1 − x) has maximum value 1
4 , so Var(X) ⩽ c2

4 .

4 Basic Statistics Term

4.1 Correlation

1. Covariance of X and Y is defined by:

Cov(X, Y) = E[(X− E[X])(Y − E[Y])] = E[XY] − E[X]E[Y]

2. Proposition: If two r.v. X and Y are independent then Cov(X, Y) = 0

3. Properties:

• Cov(X, Y) = Cov(Y,X)

• Cov(X,X) = Var(X)

• Cov(aX, Y) = aCov(X, Y)

• Cov(
∑n

i=1 Xi,
∑m

j=1 Yj) =
∑n

i=1
∑m

j=1 Cov(Xi, Yj)

• Var(
∑n

i=1 Xi) =
∑n

i=1 Var(Xi) +
∑

i ̸=j Cov(Xi,Xj)

4. Correlation between X and Y is defined by

ρ(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)

and ρ(X, Y) ∈ [−1, 1]
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4.2 Sample Statistics

From now on, let X1, · · · ,XN be i.i.d. random variables from the same distribution F

with mean µ and variance σ2

1. sample mean: Xn = 1
n

∑n
i=1 Xi, then E[Xn] = µ and Var(Xn) =

σ2

n

2. sample variance: S2
n = 1

n−1
∑n

i=1(Xi −Xn)
2, this is an unbiased estimator of σ2

3. χ2 distribution: Let Z1, · · · ,Zn be i.i.d. N(0, 1), then
∑n

i=1 Z
2
i ∼ χ2

n

4. Student t distribution: Let Z ∼ N(0, 1) and W ∼ χ2
n and Z is independent of W,

then Z√
W
n

∼ tn, the student t distribution with degree of freedom n.

5. Normalization of X ∼ N(µ,σ2): By the property of normal distribution, X−µ
σ ∼

N(0, 1).

4.3 Limit distribution

• A random variable obeys a N(µ,σ2) distribution if its density f(x) = 1√
2πσ2 exp(− (x−µ)2

2σ2 ).

• Theorem(Weak Law of Large Number) Let X1,X2,X3, . . . be a sequence of i.i.d.
r.v.s with expectation µ and (finite) variance σ2, and let X̄n = 1

n

∑n
i=1 Xi. Then,

lim
n→∞P(|X̄n − µ| > ϵ) = 0

for every ϵ > 0.

• Theorem(Central Limit Theorem): Let X1,X2,X3, . . . be a sequence of i.i.d. r.v.s
with expectation µ and (finite) variance σ2, and let X̄n = 1

n

∑n
i=1 Xi. Then, we

have the following convergence in law :

lim
n→∞P

(
X̄n − µ√
σ2/n

⩽ a

)
= FZ(a) :=

∫a
−∞

1√
2π

exp
(
−
z2

2

)
dz, ∀a ∈ R,

where Z ∼ N(0, 1). We can also write:

lim
n→∞P

(∑n
i=1 Xi −nµ√

nσ2
⩽ a

)
= FZ(a), ∀a ∈ R.

• In general, the Law of Large Number (LLN) says that X̄n is close to µ, and the
Central Limit Theorem (CLT) gives you more information about the distribution:
X̄n converges to N(µ,σ2). Or equivalently, LLN gives you the limit shape and
CLT gives you the fluctuation.
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4.4 Exercises

Exercise 5. 50 numbers are rounded to the nearest integer and then added together.
If the rounding errors are uniformly distributed between -0.5 and 0.5 (we assume
that rounding errors from different numbers are independent), what is the probability
(approximately) that the sum of the 50 rounded numbers differ(in absolute value) from
the exact sum by more than 3?

Solution. Let Xi be the rounding error of the i-th number, then Xi ∼ unif(− 1
2 , 1

2).
This implies that E(Xi) = 0 and Var(Xi) =

1
12 . And Xi are i.i.d. distributed so we can

apply the CLT, then we have approximately

50∑
i=1

Xi ∼ N(0,
50
12

)

Therefore, we have that

P(|

50∑
i=1

Xi| > 3) = P(|Z| >
3√

50/12
) = P(|Z| > 1.47) = 2P(Z > 1.47) = 0.1416.

5 Estimators and Hypothesis Testing

5.1 Maximum Likelihood Estimator (MLE)

Procedure to get MLE:

1. Write out the the likelihood function L(θ) = f(X | θ)

2. Usually to simplify the derivative form, define l(θ) = logL(θ)

3. Solve for θ̂ s.t. dl
dθ(θ̂) = 0

4. To verify it is the maximizer, use the second derivative test ( d2l
dθ2 (θ̂) < 0)

5.2 Confidence Interval, p-value, and Hypothesis Testing

1. Find the correct statistics:
From now on, we sample Xi i.i.d. from N(µ,σ2), and we want to choose the
correct statistics W(only consisting of the known data), and use the distribution
of W to do the test.
For Mean testing:
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Test Type Purpose Requirement Statistic

One sample z-test

Test mean of a
single normal;
standard deviation
is known

Normally distributed
population; known
standard deviation

Z = X̄−µ0
σ/

√
n

One sample t-test

Test mean of a
single normal;
standard deviation
is unknown

Normally distributed
population;
unknown std.
deviation

t = X̄−µ0
s/

√
n

For Variance testing: For X1, · · · ,Xn i.i.d. from N(µ,σ2), use the statistics (n−1)S2
n

σ2 ∼

χ2
n−1

Remark: Please see more on the lecture notes for the difference of the means. i.e.
Xi from N(µ1,σ2

1) and Yj from N(µ2,σ2
2), and to test on µ1 − µ2. The statistics (of

choosing Z or t) depend on whether σ2
1 and σ2

2 are known or not.

2. Confidence Interval: After finding the correct statistics W for the estimation
of a parameter θ (e.g. the mean/variance/...), and W ∼ F, (e.g. F is student
t/normal/χ2/...). Then from F (usually a table is provided) and a given level α,
we could find Fα/2 and F1−α/2.
Then we could rewrite the probability (solving the inequality for θ)

P(F1−α/2 ⩽ W ⩽ Fα/2) = P(a ⩽ θ ⩽ b)

Then the (two-sided) random interval is the confidence interval for θ at the con-
fidence level 1 −α.

example. Here we display how to get the two-sided confidence interval for µ

with Xi i.i.d. from N(µ,σ2) with know σ2. As described above, we choose the
statistics

Z =
Xn − µ

σ/
√
n

We obtain the inverse quantiles Zα/2 and Z1−α/2 = −Zα/2 because N(0, 1) is
symmetric (here Fβ means in the graph of pdf f, you find the point on the x-axis
x0, s.t. the area of f at the right of X = x0 is exactly β). Then we have

1 −α = P(−Zα/2 ⩽ Z =
Xn − µ

σ/
√
n

⩽ Zα/2)

= P(Xn −Zα/2
σ√
n

⩽ µ ⩽ Xn +Zα/2
σ√
n
)

So this interval [Xn −Zα/2
σ√
n

, Xn +Zα/2
σ√
n
] is what we want.

3. Hypothesis testing and p-value:
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(a) H0: the null hypothesis
(b) HA: the alternative hypothesis

(c)
Reject H0

Fail to Reject H0
(Also referred to as accepting HA)

H0 is true P ( reject H0 | H0 is true ) = α P ( do not reject H0 | H0 is true ) = 1 −α

HA is true P ( reject H0 | HA is true ) = 1 −β P ( do not reject H0 | HA is true ) = β

(d) p-value: The computation of p-value is very similar to the Confidence inter-
val. After deciding to use statistics W from F distribution, we compute the
realized value v by plugging in the data. Then the (two-sided) p-value is

i. 2 · P(Z > |v|) for the Z statistics
ii. 2 · P(T > |v|) for the t statistics

iii. 2 ·min{P(K < v),P(K > v)} for the χ2
n−1 statistics

Therefore, the Confidence Interval is about for a given level 1−α solving for
the inverse quantiles like Zα/2, and the p-value is about using the statistics
value v to compute its corresponding α (Similarly in hypothesis testing, we
compare v with Zα/2).

5.3 Exercises

Exercise 6. (Homework 6 Question 3) Let X1,X2, . . . ,Xn be an i.i.d. random sample
where the Xi are distributed according to a U(0, θ), i.e. a uniform distribution on the
interval [0, θ] where θ is unknown.

a) find E(X) if X is U(0, θ)
b) Show that the estimator θ̂ = 2 · x̄ is unbiased.
c) Find the maximum likelihood estimator for θ
d) Compare the mean squared error for the two estimators, which one has lower

MSE?

Solution.

[a)]As usual, we compute

E(X) =

∫
R

x · f(x)dx =

∫θ
0
x · dθ

θ
=

θ

2

Let θ̂n = 2 x = 2
n(x1 + . . . + xn). Then by linearity of expectation,

Bias(θ̂n) = E[θ̂n] − θ

= E

[
2
n
(Xx1 + . . . +Xxn)

]
− θ

=
2
n
(nE[X]) − θ

=
2
n

(
nθ

2

)
− θ

= 0
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So θ̂n is unbiased. For convenience, we let the density function of U(0, θ) be
given by

f(x | θ) =

{
1
θ 0 ⩽ x ⩽ θ

0 else

Therefore since x1, . . . , xn ⩾ 0 always, the likelihood (θ) is given by

L(θ) =

n∏
i=1

f(xi | θ)

=

n∏
i=1

{
1
θ 0 ⩽ xi ⩽ θ

0 else

=

{
1
θn θ ⩾ max{x1, . . . , xn}
0 else

and the maximum likelihood estimator θ̂n(x1, . . . , xn) is given by max{x1, ..., xn}.

We compare MSE(θ̂) in the two cases below.

1.2.3.4. • The estimator θ̂ = 2 x.
By part (b) we get E[θ̂] = θ. We also have

E[θ̂2] =
4
n2 E[(X1 + . . . +Xn)

2]

=
4
n2

(∑
i=j

E[XiXj]︸ ︷︷ ︸
E[X2]

+
∑
i ̸=j

E[XiXj]︸ ︷︷ ︸
E[X]2

)

=
4
n2

(
n E[X2]︸ ︷︷ ︸∫θ

0 x2 dθ
θ

+n(n− 1)E[X]2
)

=
4
n2

(
n · θ

2

3
+ (n2 −n)

θ2

4

)
=

θ2

3n
+ θ2

Therefore
MSE(θ̂) = E[(θ̂− θ)2]

= E[θ̂2] − 2θE[θ̂] + θ2

=

(
θ2

3n
+ θ2

)
− 2θ (θ) + θ2

=
θ2

3n
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• The maximum likelihood estimator.
Recall from part (c) that θ̂ = max{x1, . . . , xn}. For y ∈ [0, θ], the CDF of θ̂ is
hence given by

P[θ̂ ⩽ y] = P[X1, . . . ,Xn ⩽ y] =
(y
θ

)n
Then the density of θ̂ is given by

fθ̂(y) =
d

dy

yn

θn
=

nyn−1

θn

Finally,

MSE(θ̂) = E[(θ̂− θ)2] =

∫θ
0
(y− θ)2 nyn−1

θn
dy =

2θ2

n2 + 3n+ 2

Assume θ > 0. Comparing the two MSE’s above, we find that{
MSE(θ̂2x) = MSE(θ̂MLE) when n = 1, 2,
MSE(θ̂2x) > MSE(θ̂MLE) when n ⩾ 3.

In short, the maximum likelihood estimator has the lower MSE.

Exercise 7. In a certain chemical process, it is extremely important that a certain
solution that will be used as a reagent (or reactant) has a pH of exactly 8.20. A method
for determining the pH of solutions of this type is known to give measurements with
a N(µ,σ2 = 0.0004) distribution, where µ represents the current pH of the solution
tested. Suppose we take 10 independent pH measurements of a certain solution and
observe :

8.18, 8.16, 8.17, 8.22, 8.19, 8.17, 8.15, 8.21, 8.16, 8.18.

If H0 : µ = µ0 = 8.20, what conclusion can we draw at the level of significance
(a) α = 0.10 ? (b) α = 0.05 ?

Solution. We have σ = 0.02 and n = 10. Given the data, we can calculate xn = 8.179.
The test statistics (Z-statistics) is thus

z =
xn − µ

σ/
√
n

=
8.179 − 8.2

0.02
√

10
≃ −3.32.

(a) we have |z| > Zα/2 = 1.645, so we reject H0 at the significance level α = 0.10.
(b) we have |z| > Zα/2 = 1.96, so we reject H0 at the significance level α = 0.05.

12



6 Regressions

6.1 Linear Regression

1. X: Response (dependent) variable; Y: Explantory (independent) variable

2. Sample linear correlation coefficient RX,Y =
∑n

i=1(Xi−X̄)(Yi−Ȳ)√∑n
i=1(Xi−X̄)2

√∑n
i=1(Yi−Ȳ)2

∈ [−1, 1].

The larger |RX,Y | is, the more the scatter plot looks like a straight line.

3. Model Ŷi = â+ b̂Xi, and the difference ϵi = Yi − Ŷi is the residual/error.

4. sum of squared residuals: SSR =
∑n

i=1(Yi − â− b̂Xi)
2 measures the "closeness"

of regression line to the data

5. Using the Method of least squares. i.e. solving that ∂SSR

∂â = 0 and ∂SSR

∂b̂
= 0, we

obtain that

• â = Y − b̂ X

• b̂ = SXY

SXX
=

∑n
i=1 XiYi−nXY∑n
i=1 X

2
i−nX

2

where

SXY =

n∑
i=1

(Xi − X̄)(Yi − Ȳ) =

n∑
i=1

XiYi −nX · Y

SXX =

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

X2
i −nX

2

6. Coefficient of determination:

R2 =
SYY − SSR

SYY
= 1 −

SSR
SYY

∈ [0, 1]

The larger R2 is, the better is the model. Here we could also interpret as:
SYY = SSR + (SYY − SSR), where SSR is explained by the error terms ϵ1, · · · , ϵn
and (SYY − SSR) is explained by the input data x1, · · · , xn.
By an exercise, we can show that R2

X,Y = R2.

7. Distribution of the estimators: Normally we assume that ϵi
iid
∼ N(0,σ2) and we

treat the data x1, · · · , xn are constants. We also believe that there exist certain
unknown a and b such that Y = a+ bx+ ϵ. Then we have:

(a) Can treat Yi = a+ bxi + ϵi ∼ N(a+ bxi,σ2) as random variables.

(b) σ2 is unknown with unbiased estimator S2 = SSR

n−2 (lose 2 degrees of freedom
due to estimating a and b) (you can show that SSR

σ2 ∼ χ2
n−1

(c) b̂ =
∑n

i=1 XiYi−nXY∑n
i=1 X

2
i−nX

2 ∼ N(b, σ2

Sxx
) is an unbiased estimator for b.
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(d) â = Y − b̂ x ∼ N(a, σ2 ∑
i=1 x

2
i

nSxx
) is an unbiased estimator for a.

8. Given the above distribution, we could do the inference on all the parameters.
Indeed,

(a) for b: Use statistic b̂−b√
σ2/Sxx∼N(0,1)

(b) for a: Use statistic
√

n(n−2)Sxx

SSR

∑n
i=1 x

2
i

(â− a) ∼ tn−2

6.2 Nonlinear Regression: Logistic Regression

In general, there are a lot more models to consider: For example, multiple linear
regression (with more than 1 input variable), and some nonlinear models for example,
logistic regression, exponential regression, poisson regression, and generalized linear
models.
Now we want to use Yi to help us categorize items, so we make that Yi can only take
values in {0, 1}, for example, when you want to estimate married women in the labor
force, and Yi = 0 means unmarried and Yi = 1 married.
Hence, since Yi ∈ {0, 1}, it is a Bernoulli r.v. with parameter πi = P(Yi = 1) (Here
again we either treat xi as determined constants or we could let Xi to be random and
consider πi = P(Yi = 1 | Xi = xi) as conditional probability).
But when Yi = 1, ϵi = 1−a−bXi; and when Yi = 0, ϵi = −a−bXi, so ϵi is nonnormal
(as an exercise, you can see that the error has nonconstant variance as well). To solve
the issue, instead of using the normal distribution, we use logistic distribution for ϵL

with mean 0 and standard deviation σ = π/
√

3 with cdf FL(ϵL) =
exp(ϵL)

1+exp(ϵL)
, we could

restate the model as:
Yi are independent Bernoulli random variables with expected value :

πi = E[Yi] = P(Yi = 1) =
exp(a+ bxi)

1 + exp(exp(a+ bxi))

where again we either treat xi as determined constants or we could let Xi to be random
and consider πi = P(Yi = 1 | Xi = xi) as conditional probability.
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